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Fig. 1. Selection of classic estimation problems, depicting poor local minima (in red) and the corresponding, certified, global minima (in green). The ground
truth is depicted in gray and black. Problems 1. involve range-only estimation, 2. involve landmark-based estimation, and 3. involve trajectory estimation. A
concise overview of the formulations of these and other problems we have treated can be found in Table I.

Abstract—We provide a concise overview of our progress in
identifying and certifying globally optimal solutions of state
estimation problems in robotics. We give a summary of the
theoretical background, providing pointers for novices in the
field to learn about this topic. We then given an overview of the
problems we have treated, putting them in a unified framework to
make it easier to find, compare, and build upon them. We discuss
our methods for simplifying the generation and analysis of these
solutions, and finally, present advances to allow to embed them
in real-world robotics pipelines. We conclude with a discussion
of important open research problems.

I. INTRODUCTION

Reliable state estimation is the foundation of most suc-
cessful robotics applications. With the proliferation of batch
estimation, where state estimation is generally posed as a
nonlinear least squares problem, fast local solvers have become
a frequent component of the robotics pipelines. They allow to
solve problems in more than thousands of variables quickly
and with little memory consumption, enabling their use in
real-time applications and on embedded platforms with limited
computing resources [1], [2]. However, by definition, these
local solvers may converge to local minima that may be far
from the globally optimal solution, as shown in Figure 1.
Relying on such solutions without a verification mechanism
may result in performance degradation and even catastrophic
consequences. This paper summarizes our efforts from the last
two years to address the risk of local minima in robotics by
deriving certifiably optimal solutions to classic state estimation
problems. We structure the paper along the three frontiers that
we continue to explore.

a) Extending the catalogue: In Section IV-A, we give a
coherent overview of the new problems that we have globally
solved or certified to date, thus extending the catalogue of
optimally solvable state estimation problems in the literature.
We provide the chronological thread and put all problems in
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a unified notation to facilitate identifying their commonalities
and differences. By exposing the thought process behind the
developed solutions, we hope to enable not only a deeper
understanding of the material, but also to empower researchers
and practitioners to contribute to this important field.

b) Simplifying the onboarding process: Most sufficiently
realistic problems that we have looked at are NP-hard to solve
to global optimality. Therefore, by definition, the methodology
used in Section IV-A does not always work. It does work when
the semidefinite relaxations developed in the process are tight,
a concept which we briefly explain in Section III. Understand-
ing and simplifying the process of achieving tightness for a
new problem are therefore essential, and our advances in this
direction are summarized in Section IV-B.

c) Making solutions practical: Optimality is only one
axis in the landscape of desiderata for solvers in robotic
state estimation. Our third frontier revisits two of the other
fundamental requirements: the solver speed and its integration
within end-to-end learned pipelines. We outline our advances
to make semidefinite program (SDP) solvers faster by exploit-
ing sparsity, and our work on global optimality in differen-
tiable optimization, in Section IV-C.

II. PROBLEM STATEMENT

The core subject of this line of work is the MAP estimator,
a probabilistic approach that typically amounts to minimiz-
ing the weighted sum of squared errors between the output
of a sensor forward model and the measurement [3], and
(optionally) prior terms. We assume that all measurements
and priors are recorded in a measurement graph with nodes
corresponding to variables and known parameters and edges
corresponding to measurements. All problems discussed here
then take the form

θ̂ = arg min
θ∈Θ

∑
(i,j)∈E

eij(θ,Ψ)⊤Wijeij(θ,Ψ), (1)

where E is the edge set, which we will further split into subsets
R ⊂ E and A ⊂ E for relative measurements (i.e., inertial
measurement unit (IMU) measurements or motion priors) and
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reformulation rank relaxation Lagrangian dual of (P), (Q)

Fig. 2. Depiction of an example MAP problem (1) (in factor graph form), its QCQP reformulation (Q), its rank relaxation, also called primal (P) and the
Lagrangian dual problem of (Q) and (P), denoted by (D). The graphs on the right show a simplified depiction of the relationship between these problems.

absolute measurements (i.e., range measurements to land-
marks), respectively. The variable θ may be a continuous-time
(CT) or discrete-time (DT) representation of the state, and Θ
is its feasible set. All other problem parameters are combined
in Ψ, where we distinguish between Ψf for fixed parameters,
such as known landmarks, and Ψm for changing entities such
as measurements. The terms e and W are the error terms
and weighting matrices derived from the measurement or prior
models, respectively. A general measurement graph associated
with this optimization problem is shown in Figure 2.

We use SO(d) and SE(d) to denote the special orthogonal
and Euclidean group, respectively. We use r ∈ Rd to denote
translation in d dimensions, and R ∈ SO(d) for rotation.
We introduce T ∈ SE(d), the associated transformation
matrix, and use superscript i to denote the frame in which
we operate, but dropping it when we operate in the inertial
frame. In our conventions, a vector mk in the inertial frame
can be expressed in frame i by using: mi

k = KT im̄k =[
I 0

] [Ri ri

0⊤ 1

] [
mk

1

]
, where the identity matrix and vector

of all zeros are denoted by I and 0, respectively. We let
⟨X,Y ⟩ be the standard matrix inner product, and X ⪰ 0
means matrix X is positive semidefinite (PSD).

Often, the sensor models in (1) are nonlinear, or Θ is a non-
convex set, in which case (1) is non-convex and may be hard
to solve to global optimality. In the next section, we see how
to relax problems of the form (1) to SDPs and how to exploit
those for global optimality certificates. Readers familiar with
certifiable estimation may safely skip directly to Section IV.

III. BACKGROUND ON SEMIDEFINITE RELAXATIONS

We give a brief overview of the standard machinery used in
certifiably optimal estimation. All problem formulations that
we refer to in this section are given in Figure 2.

a) Semidefinite relaxations: Our approach uses QCQPs
and their relaxations, which encompasses numerous estimation
problems. Indeed, many problems of the form (1) are in fact
a polynomial optimization problem (POP) (polynomial cost
and constraints). It is always possible to transform any POP
into a QCQP by introducing so-called substitution variables.
As a simple example, consider a cubic function of the form
p(θ) = θ3. By introducing a new variable, z, and associated
quadratic constraint, z = θ2, we can express this function
quadratically as p(z, θ) = zθ. In the final formulation, we
typically collect all variables in a vector, x, and formulate
the cost and constraint accordingly. A comprehensive outline
of this process is given in [4]. The general form of the thus
obtained QCQP, which we call (Q), is given in Figure (2).

This non-convex QCQP reformulation is still as difficult
to solve as the original problem (1). However, QCQPs have

a well-studied rank relaxation and Lagrangian dual problem,
which we denote by (P) (for primal) and (D), respectively, in
what follows. They are both SDPs with standard forms given
in Figure 2. Detailed derivations of these problems can be
found in [5], for example. Problem (D) is a concave lower-
bounding function of the original problem, and (P) is a convex
lower-bounding function. Under mild assumptions, we have,
for their respective optimal values, d⋆ = p⋆, but the optimal
value of (QCQP) may be higher in general. When we also have
d⋆ = p⋆ = q⋆, we say that strong duality holds, or that we have
cost tightness. If we additionally have that rank (X⋆) = 1 for
the optimizer of (P), we say that we have rank tightness.

b) Certifying optimality: We use two different ap-
proaches to certify optimality. In the first approach, a standard
local solver produces a candidate solution and the dual prob-
lem (D) is used to derive an optimality certificate based on
properties of the dual matrix, H , which is therefore referred
to as the certificate matrix.

Cost certificate. Let x̂ be a solution candidate (a second-
order critical point) of (Q). If there exists λ⋆ such that:

H(λ⋆)x̂ = 0 (stationarity), (2a)
H(λ⋆) ⪰ 0 (dual feasibility), (2b)

then x̂ = x⋆ is the globally optimal solution of (Q).

This is very powerful in practice: it means that, given a local
solution of the original problem, we can certify its global op-
timality by solving the feasibility problem (2). As we will see,
for certain problems, in particular when Linearly Independent
Constraint Qualification (LICQ) holds, (2a) admits a closed-
form solution for λ⋆, which can then be plugged into (2b)
to certify global optimality. When LICQ does not hold, the
key challenge in certification involves solving for the optimal
Lagrange multipliers. As we will see, this is the case when
redundant constraints are used to tighten the relaxation.

The second approach consists of solving (P) using an SDP
solver and checking the rank of the solution.

Rank certificate. Let X̂ be a solution of (P). If rank (X̂) = 1
then we can obtain the exact factorization X̂ = x⋆x⋆⊤, where
x⋆ is the globally optimal solution of (Q).

c) Improving tightness: The ability to use the two above
approaches depends on the tightness of the relaxations. We
review three important concepts used to address tightness, that
are fundamental to our contributions.

Redundant constraints: It is well known (see, e.g., [12])
that adding constraints that are redundant in (Q) (but non-
redundant in (P) and (D)) can improve the tightness of the
relaxation. Intuitively speaking, such constraints can be used
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TABLE I
OVERVIEW OF STATE ESTIMATION PROBLEMS THAT CAN BE WRITTEN AS POLYNOMIAL PROBLEMS WITH TIGHT SEMIDEFINITE RELAXATIONS.

relative errors eij absolute errors eik weights variables θ ⊂ Θ known Ψf measured Ψm reformulation red. reference

1.a
[
∆tivi − (ri − rj)

vi − vj

]
d̃2ik − ∥ri −mk∥2 aniso. r(t) ∈ Rd,v(t) ∈ Rd mk d̃ik zi = ∥ri∥2 no [6] (WNOA)

1.b — d̃2ik − ∥ri −mk∥2 iso.* ri ∈ Rd mk d̃ik zi = vech (rir
⊤
i ) yes [7] (RO)

1.c — d̃2ik,j − ∥KTipj −mk∥2 iso.* Ti ∈ SE(d) mk,pj d̃ik,j ℓij = KTipj , zij = ∥ℓij∥2 yes [8] (Static)

1.d — d̃2ik,j −
∥∥∥KT e∆tiω

∧
pj −mk

∥∥∥2 iso.* T ∈ SE(d),ω ∈ R2d mk,pj d̃ik,j
ℓij ≈ K(I +∆tiω

∧)Tpj ,

zij = ∥ℓij∥2
yes [8] (Dynamic)

2.a vec
(
T̃ijTj − Ti

)
m̃k −KTim̄k iso. Ti ∈ SE(d) mk m̃k, T̃ij — no [9] (SLAM)

2.b — m̃k −KTimk aniso. Ti ∈ SE(d) mk m̃k zik = KTimk yes [10] (Wahba)
2.c vec

(
T̃ijTj − Ti

)
m̃k −KTimk mixed Ti ∈ SE(d) mk m̃k, T̃ij zik = KTimk yes [10] (SLAM)

2.d — ỹk − (Timk)
−1
d CTimk iso.* Ti ∈ SE(d) mk , C ỹk zik = (Timk)

−1
d CTimk yes [7] (Stereo)

3.a — cay−1
(
T T̃−1

i

)
aniso. T ∈ SE(d) — T̃i zi = cay−1

(
T T̃−1

i

)
yes [11] (Pose avg.)

3.b cay−1
(
TiT

−1
j T̃−1

ij

)
cay−1

(
TiT̃

−1
i

)
aniso. Ti ∈ SE(d) — T̃i, T̃ij

zi = cay−1
(
TiT̃

−1
i

)
zij = cay−1

(
TiT

−1
j T̃−1

ij

) yes [11] (DT synch.)

3.c

[
∆tiωj − cay−1

(
TiT

−1
j

)∨

ωi − ωj

]
cay−1

(
TiT̃

−1
i

)
aniso. Ti ∈ SE(d) — T̃i

zi = cay−1
(
TiT̃

−1
i

)
zij = cay−1

(
TiT

−1
j

) yes [11] (CT synch.)

∆ti time interval vi/wi linear/generalized velocity C stereo camera matrix d̃ik, ỹik, m̃ik, T̃ij measurements
iso. isotropic, aniso. anisotropic, iso.* easily extended to anisotropic vech (·) half-vectorization ∧,∨ skew-symmetric operator and its inverse

to reintroduce structure in the primal (P) that is lost when
relaxing the rank constraint.

Lasserre’s hierarchy: Finally, it was shown that by adding
enough higher-order terms to x in (Q), along with associated
(primary and possibly redundant) constraints, the reformula-
tion will eventually have a tight relaxation [12], [13].

SDP stability: Once tightness has been estabilished for a
given problem, a key result presented by [14] allows us to
extend this tightness results to other problems with similar
parameters (e.g., state-estimation problems that are tight for
zero noise, remain tight at low noise levels).

IV. SUMMARY OF CONTRIBUTIONS

Over the last years, researchers have identified many prob-
lems that admit polynomial formulations and can thus be
treated using the methodology outlined in Section III; exam-
ples include (range-aided) pose-graph optimization [15], rota-
tion averaging [16], and robust estimation [4]. Taking a fresh
look at classical state estimation problems, we have focused
particularly on landmark-based, range-based, and rotation-
based estimation, which we describe next. To facilitate their
comparison, we write each considered problem in the form (1)
and provide an overview of the different components for each
problem in Table I.

A. Extending the catalogue

Our first work on landmark-based estimation, [9] (2.a in
Table I) showed how to handle landmark variables efficiently
in the framework proposed in [15], and introduced an effi-
cient cost certificate. The certificate is applied to landmark-
based simultaneous localization and mapping (SLAM) and
its subgroups such as bundle adjustment and pose-graph
optimization. In these first works, an isotropic noise model
was used in the formulation of the MAP problem, which is
crucial for certain simplifications of the cost function. In our
follow-up work, [10] (2.b and 2.c), we show that when using
anisotropic noise models, we need to introduce higher-order
substitutions and a relatively large number of redundant con-
straints for tightness. In methods 2.a to 2.c, we assume linear

measurement models, so when dealing with camera images,
pixel measurements of features are first projected to Euclidean
space using the inverse camera model. In a later, independent
line of work [7] (2.d), we studied a method that minimizes
the reprojection error (in pixel space) instead, which better
captures noise on pixel measurements. This relaxation turned
out to be significantly less tight, and required adding bilinear
terms and a significant number of redundant constraints to x
(thus going up one level in Lassere’s hierarchy [12]).

In parallel work, we investigated range-based estimation
problems. In range-only localization, the trajectory of a device
is to be determined based on possibly asynchronous distance
measurements from known and fixed anchor points, for exam-
ple based on ultra-wideband (UWB) measurements. When we
can solve for one position at a time (i.e., when we get more
than d + 1 non-degenerate measurements at each timestep)
globally optimal solvers exist [17], [18]. We instead treated
the more realistic underdetermined case (1.a) [6] where we
use a Gaussian process (GP) motion prior to regularize the
problem and obtain a CT trajectory estimate. GP motion priors
allow to incorporate physical assumptions such as the widely
used white-noise-on-acceleration (WNOA) prior. Since the GP
only consists of augmenting the state with temporal derivatives
and adding quadratic cost terms, it is a suitable candidate
for polynomial optimization and hence SDP relaxations and
indeed, the relaxation was found to be tight without redundant
constraints.1 Finally, we derived certifiably optimal solvers for
estimating a robot’s pose, using multiple distance tags on the
robot to determine its orientation (1.c and 1.d). This problem
is significantly higher-dimensional than problems 1.a and 1.b
and requires redundant constraints for tightness, even when
using the minimal substitution. Therefore, when trying to solve
for multiple poses at once, we resort to a constant-velocity
reparametrization of the trajectory (1.d).

A more permissive approach than the ‘hard’ constant-
velocity reparametrization used in (1.d) is to use a ‘soft’
motion prior based on the constant-velocity assumption, for

1Later, we found that a less minimal substitution than in [6], [17] requires
the addition of redundant constraints for tightness (1.b).
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which the GP method [19], [20] is a suitable candidate, as
done in (1.a). However, when rotation variables are involved in
this prior, the formulation includes a matrix exponential, which
leads to a non-polynomial optimization problem. As a remedy,
we proposed to use the Cayley map instead of the exponential
map, which is similar in terms of the noise characteristics
it may capture, but leads to polynomial constraints instead.
Applying this map to CT pose synchronization problems
leads to method (3.c). In fact, the Cayley map presents an
alternative way to globally solve many other categories of
trajectory estimation problems, such as DT pose synchro-
nization (3.b), pose averaging (3.a) and rotation averaging
(omitted for brevity). Formulations 3.a to 3.c showcase a
progression in complexity, accompanied by a growth of the
number of redundant constraints required for rank tightness.

B. Simplifying the onboarding process

We saw that many of the studied problems used redundant
constraints to tighten the relaxations. Finding these constraints
for a new problem has been of paramount importance in our
and prior works, but the search process usually requires good
intuitions or lengthy manual work. To make this process more
scalable and generalizable, we have developed a method to
automatically determine a sufficient set of redundant con-
straints. This method, which we dubbed AUTOTIGHT is what
allowed us to find the redundant constraints for all problems
in Table I. The method proceeds by determining the nullspace
of a number of rank-1 feasible samples of (P) for an example
problem. Each nullspace vector corresponds to one learned
redundant constraint. These learned constraints can then be
generalized to new problem instances through a templating
mechanism [7].

Finally, in [10], we show that we can better understand
tightness by drawing the link between the certificate matrix
and the uncertainty of the posterior estimate. Indeed, the
posterior uncertainty is tightly coupled to the Fisher Infor-
mation Matrix (FIM), defined as the second derivative of the
negative log-posterior distribution, which, in turn, is linked to
the (Riemannian) Hessian of the optimization problem. The
(Riemannian) Hessian, on the other hand, has a direct link
with the certificate matrix H . We show in [10] that a higher
posterior uncertainty affects the tightness of the semidefinite
relaxation (SDR) — for example, when the landmarks are
configured such that uncertainty is concentrated along a given
axis, the relaxation becomes less tight.

C. Making solutions practical

Despite the progress mentioned in the previous sections,
the question of whether certifiable solutions can keep up
with the demands of real robotics applications remains. To be
viable, these algorithms need to be fast enough for realtime
operation while still remaining accurate. Moreover, certifiable
techniques must integrate well in modern robotics pipelines,
which increasingly leverage deep learning.

Most real-time solvers of MAP estimation problems rely
on the efficient exploitation of sparse problem structure [2].
Similarly, many of our developed optimality certificates exploit
sparsity explicitly. We design an efficient representation of

the sparse cost matrix in landmark-based estimation [9], and
propose a linear-time PSD test of the sparse certificate matrix
in [6]. In our most recent work [21] we further show that
in many problems, chordal sparsity can be exploited for a
significant speedup, in particular in state estimation problems
without loop closures, such as localization. An important
finding in this work, particularly considering the number
of problems that require redundant constraints for tightness,
is that the aggregate sparsity is the determining factor —
meaning, the sparsity considering both cost and constraint
matrices.

Recent integration of classical optimization approaches into
end-to-end learning pipelines has been enabled by research
into differentiable optimization. However, when the optimiza-
tion is non-convex, convergence to local minima can lead to
incorrect gradient information that corrupts the training pro-
cess. Our recent work shows that, by leveraging results from
differentiable convex optimization, certifiable algorithms can
be used directly in end-to-end robotics learning pipelines [22].
We showed that certifiable methods always provide correct
gradient information and applied this approach to train and run
a robotic, outdoor localization pipeline that uses deep-learning
to train lighting-invariant features.

V. OUTLOOK

We have seen that certifiable algorithms have begun to be
adopted in robotics, primarily in perception and state estima-
tion, but also in other areas such as planning, where promising
first advances have already been made [23]. However, we
believe that for these algorithms to be used more widely
in robotics in general, progress must be made in three key
directions:
Theory: A deeper theoretical understanding of the mecha-
nisms that lead to tight SDP relaxations is sorely needed,
especially in terms of the cause of loss of tightness and a
systematic approach to efficiently regain tightness. We have
made some initial steps along both of these lines (see [7],
[10]), but our approach thus far has been largely empirical.
Investigation of certificates of solution accuracy in addition to
global optimality are also an important avenue for ensuring
the safe operation of robots in general [24].
Exploiting Sparsity: Particularly in state estimation, it is
well known that many large-scale problems of interest exhibit
significant sparsity. It is imperative that algorithmic progress is
made to efficiently exploit this sparsity. In online applications,
this involves addressing loop closures and enabling cheap
incremental updates, similar to the approach by [2] for local
optimization. Furthermore, finding sparsity-preserving redun-
dant constraints is important to harvest the speedups described
in Section IV-C.
Implementation: The theoretical background alone presents
significant ‘barrier-to-entry’ for certifiable methods if practi-
tioners are required to build solutions from scratch. Although
some certifiable, plug-and-play, backend solutions for robotics
problems exist (e.g., [15], [25]), more are needed to spur
widespread adoption. In a similar vein, open-source, robotics-
friendly, SDP solvers with key features such as warm starting,
parallelization, and anytime solutions are also important.
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